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A Dependence of Open Charm and Quarkonium
Open charm appears to be independent of A (Nbin) but note that the measurement
is at midrapidity only
Definite A dependence for quarkonium while Drell-Yan is effectively independent
of A
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Figure 1: (Left) The dependence of the open charm cross section on the number of binary collisions measured by the STAR Collaboration
at central rapidity. (Right) The A dependence of quarkonium and Drell-Yan production measured by E772.



E866 Measured Open Charm and J= vs xF

E866 also measured open charm pA dependence using single muons with p�
T > 1

GeV/c (unpublished)
Different from J= for y < 0:7 but similar for higher y, suggests that dominant
effects are in the initial state
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Figure 2: The J/ψ and open charm A dependence as a function of xF (Mike Leitch).



Medium Effects Important with Nuclear Target
Nuclear effects often parameterized as

� pA = � ppAα � (xF ; pT )

For √
sNN ≤ 40 GeV and xF > 0:25, � decreases strongly with xF – only low xF effects

probed by SPS and RHIC rapidity coverage
Possible cold matter effects

• Nuclear Shadowing — initial-state effect on the parton
distributions affecting total rate, important as a function of y/xF

• Energy Loss — initial-state effect, elastic scatterings of projectile parton before
hard scattering creating quarkonium state, need to study Drell-Yan production
to get a handle on the strength when shadowing included

• Intrinsic Charm — initial-state effect, if light-cone models correct, should only
contribute to forward production, assumed to have different A dependence than
normal J= production

• Absorption — final-state effect, after cc that forms the J= has been produced,
pair breaks up in matter due to interactions with nucleons



Shadowing
DGLAP-style Evolution
Collinear Factorization



Parton Densities Modified in Nuclei
Nuclear deep-inelastic scattering measures quark modifications directly
More uncertainty in nuclear gluon distribution, only indirectly constrained by Q2

evolution of parton densities
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Figure 3: (Left) Ratios of charged parton densities in He, C, and Ca to D as a function of x. (Right) Evolution of gluon distributions in Sn relative to C targets
with Q2 for several fixed values of x. [From K.J. Eskola.]



Eskola et al Method: I
Other groups use different data sets, initial assumptions, but similar methods – all
start with nDIS data, usually with a minimum factorization/renormalization scale
of ∼ 1 − 2 GeV2

Nuclear effects on PDFs divided into x regions

• shadowing; a depletion at x <∼ 0:1,

• anti-shadowing; an excess at 0:1 <∼ x <∼ 0:3,

• EMC effect; a depletion at 0:3 <∼ x <∼ 0:7

• Fermi motion; an excess towards x → 1 and beyond.

Define ratios of the individual and total valence and sea quark distributions and
the gluon ratio in nuclei relative to protons

RA
q̄ (x; Q2) ≡

q̄A(x; Q2)
q̄(x; Q2)

RA
qV (x; Q2) ≡

qAV (x; Q2)
qV (x; Q2)

RA
G(x; Q2) ≡

gA(x; Q2)
g(x; Q2)

RA
V (x; Q2) ≡

uAV (x; Q2) + dAV (x; Q2)
uV (x; Q2) + dV (x; Q2)

;

RA
S (x; Q2) ≡

ūA(x; Q2) + d̄A(x; Q2) + s̄A(x; Q2)
ū(x; Q2) + d̄(x; Q2) + s̄(x; Q2)

Most groups now have NLO sets and some include uncertainties, e.g. EPS09
includes 31 sets: 1 central + 30 obtained by varying each parameter by one standard
deviation



Eskola et al Method: II
Determination of RA

i (x; Q2) from nuclear deep-inelastic scattering (nDIS) and Drell-
Yan (DY) data

• Formulate RA
F2

(x; Q2) and RA
DY(x; Q2) based on linear combinations of the quark

and antiquark ratios

• Make an ansatz for RA
F2

(x; Q2
0) based on nDIS data

• Decompose RA
F2

(x; Q2
0) into RA

V and RA
S

• Constrain RA
V using baryon number conservation

∫ 1
0 dx[uV (x; Q2

0) + dV (x; Q2
0)]RA

V (x; Q2
0) = ∫ 1

0 dx[uV (x; Q2
0) + dV (x; Q2

0)] = 3

• Constrain RA
G(x; Q2

0) by momentum conservation (gluons removed at low x get
put back at higher x, for stability of RA

V and RA
S assume gluon EMC effect)

1 = ∫ 1
0 dx x

{
g(x; Q2

0)RA
G(x; Q2

0)+[uV (x; Q2
0)+dV (x; Q2

0)]RA
V (x; Q2

0)+2[ū(x; Q2
0)+ d̄(x; Q2

0)+s(x; Q2
0)]RA

S (x; Q2)
}

• Perform DGLAP evolution of the initial nPDFs which can further constrain
gluon shadowing

@RAF2
(x; Q2)

@log Q2 =
@FD2 (x; Q2)=@log Q2

FD
2 (x; Q2)

{ @FA2 (x; Q2)=@log Q2

@FD2 (x; Q2)=@log Q2 − RA
F2

(x; Q2)
}

≈
5� s
9�

xg(2x; Q2)
FD

2 (x; Q2)

{
RA
G(2x; Q2) − RA

F2
(x; Q2)

}

• Constrain RA
S(x; Q2

0) and RA
V (x; Q2

0) with Drell-Yan data
• Repeat, repeat, repeat



Comparison of LO and NLO nDS nPDFs
When data are available, LO and NLO shadowing results agree, as they are meant
to by construction
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Figure 4: (Left) The π0 cross section in d+Au collisions at
√
sNN = 200 GeV at LO and NLO. (Right) The LO and NLO calculations of RdAu,

along with the NLO calculation with nDSg.



Comparing Shadowing Parameterizations: x Dependence

Figure 5: Comparison of EKS98 (red), nDSg (blue), HKN (green), EPS08 (magenta), and EPS09 (cyan, with symbols) gluon shadowing
parameterizations for J/ψ (left) and Υ (right) production scales with A =O, Ar, Sn and Pb.



Saturation
Starting from the Nucleon

BFKL-type Evolution (Schematic Only)



Schematic View of Saturation Regime

Saturation condition: when the
gluon density, � g, is sufficiently
high, recombination of gluons
(2 → 1) competes with emission of
new partons (1 → 2) � ∼ 1=� s

Packing factor: fraction of how
much of nucleon/nuclear disk is
packed with partons,
� = � dipole=�R 2, � dipole ∝ F2(x; Q2)=Q2

Qsat grows with increasing
√

s and
decreasing x

in nuclei Qsat increases by A1=3



Pinning Down the Gluon nPDF
To constrain gluon density using the J= , also necessary to constrain other cold
matter effects, left side shows NMC Sn/C J= ratios, intermediate x only, not very
conclusive
Right side: LO and NLO EPS09 shadowing ratios extracted from Q2 evolution of
nDIS; PHENIX � 0 data and momentum sum rules
LO ratios show wider antishadowing and bigger uncertainty in EMC region (x >
0:3), bigger uncertainty at low x

Figure 6: (Left) Ratio of gluon distributions in Sn and C targets extracted from J/ψ production by NMC. (Right) The modification of the
gluon densities at LO (blue) and NLO (red) with EPS09, including uncertainties (dashed lines), calculated at mψ.



Shadowing on J= in d+Au Collisions at √sNN = 200 GeV

Left: RdAu calculated at LO and NLO in CEM, Right: ’intrinsic’ (LO CEM) vs.
‘extrinsic’ (LO CSM).
LO CEM calculation on left equivalent to ‘intrinsic’ 2 → 1 calculation with pT = 0
on right-hand side
NLO CEM has higher average scale, shifts antishadowing peak to higher rapidity,
and smaller scale dependence, similar to ’extrinsic’ 2 → 2 LO CSM calculation

Figure 7: Left: The LO and NLO calculations of RdAu. Right: ‘Intrinsic’ (CEM) vs. ‘extrinsic’ (CSM with s-channel cut) calculation of
Ferreiro et al..



J= A Dependence vs. x2 and ycm

Effective � dissimilar as a function of x2, closer to scaling for ycm

At negative xF , the HERA-B result suggests a neglible effective J= absorption
crosss section
Argument for more physics at forward xF than accounted for by nuclear shadowing
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Energy-Loss Models
Drell-Yan

J= 



Drell-Yan Production: Simplest Case
Good theory for pp production, small K factor with NLO calculation
K = 1:124±0:007, � 2=ndf = 1:4 relative to E866 measurements in 800 GeV pp collisions
(J.C. Webb Ph.D. thesis [arXiv:hep-ex/0302019]).
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Figure 9: Left: The xF dependence of the Drell-Yan cross section in several mass bins from 800 GeV pp colisions compared to NLO calculations. Right:
Difference between the measured Drell-Yan cross section and the NLO calculations in the same mass bin.



Energy Loss in Drell-Yan? NA3 p+Pt at 400 GeV
Compare NA3 data with NLO calculations with/without central EPS09 nPDFs
(difference small)
Test parameterization of initial state energy loss

x ′
1 = x1(1 − � q)N−1

x ′
1 enters M 2 = x ′

1x2sNN , x1 is in nPDFs, N is number of NN collisions, ∝ A1=3

Vary � q to get best fit, 99% confidence level gives upper limit on � q of 0.0020
Assume � g = (9=4)� q for NLO qg contribution
K ∼ 1, � 2=ndf slightly smaller with no shadowing
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Figure 10: Left: The invariant DY cross section in pPt collisions at 400 GeV as a function of xF in different mass bins with EPS09 nPDFs. Right: The K
factors found in comparison to the data with various values of the energy loss parameter ǫq.



Is Shadowing Sufficient to Explain Data?
Extracting energy loss from shadowing difficult, the two are intertwined
At 400 GeV and 4 < M < 9 GeV, the modification of the Drell-Yan cross sec-
tion is nearly independent of xF , thus energy loss extracted from data is basically
independent of EPS09 PDFs; average K factor shift can account for difference
E866 W/Be and Fe/Be ratios at 800 GeV in similar mass regions suggest energy
loss parameter no larger than that found at 400 GeV; E772 W/D and Fe/D ratios
confirm trend
Is energy loss a predominantly final-state effect? Then Drell-Yan is unaffected...
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Heavy-to-light ratios for Drell-Yan production at 800 GeV. The curves show the EPS09 results with no energy loss included (solid) and ǫq = 0.0020 (dashed) the
same value obtained at 400 GeV. The Fe/Be ratio, similar to Fe/D, is shown in red while the W/Be (W/D) ratios are shown in black. (Note that these curves
are calculations, not fits to the data.)



Other DY Energy Loss Calculations
Left-hand side shows limits on energy loss in different cases (fitting schematic
parameters k1, k2 and k3 to E866 DY data):
Gavin and Milana (PRL 68, 1834 (1992)), ∆x1 = −k1x1A1=3

Brodsky and Hoyer (PL B 298, 165 (1993)), ∆x1 = −(k2=s)A1=3

Baier et al (NP B 484, 265 (1997); 531, 403 (1998)), ∆x1 = −(k3=s)A2=3

Right-hand side is calculation by Kopeliovich et al (PRL 86, 4483 (2001)), dE=dx =
2:32 ± 0:52 ± 0:50 GeV/fm fit to E772 data
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Adding Initial State Energy Loss to J= Production
Rather large EPS09 uncertainty reduced in ratios; clearly initial-state shadowing
is insufficient to describe effect
Combination of shadowing and energy loss with relatively xF -independent
absorption compares relatively well with the data for xF > 0:2; HOWEVER, the
assumed � g is much larger than � q for Drell-Yan production – final-state loss??
Stronger absorption closer to target? Formation time effects not included
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Initial-State Energy Loss with HERA-B Data (RV)
HERA-B 2008 data compared to E866 and calculations with initial-state energy
loss similar to those done for Drell-Yan by E866 but no fitting done to E866 data,
only using original parameters
Final HERA-B data do show some rise at negative xF
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Figure 14: Measurements of α as a function of xF by HERA-B (filled triangles, plotted with total and statistical uncertainties), E866 (
√
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√
s = 29.0 GeV) (empty triangles). The curves were calculated by RV based on three different nuclear parton distribution functions: (EPS08,

EKS98 and HKN) and two models of initial state energy-loss: Gavin & Milana and Brodsky & Hoyer. For all approaches, energy loss, intrinsic charm and
shadowing are taken into account.



Final-State Energy Loss (Kharzeev and Satz)
Backward rise could be due to final-state energy loss
Kharzeev and Satz (Z. Phys. C 60, 389 (1993)), assumed final-state loss of color
octet cc, momentum is reduced by ∼ �L A where � is string tension and LA is path
length,  state produced with xF =� where � ≈ 1 − �L A=P 

GA(xF ) ∝ SAGp(xF ) + (1 − SA)
Gp(xF =� )

�
� (1 − xF =� )

Lower energies show a stronger decrease

Figure 15: The A dependence of ψ production assuming KS loss for xF > 0. Octet cross sections of 1 mb (solid), 20 mb (dashed) and 40 mb (dot-dashed) are
calculated with the MRST LO parton densities at 800 GeV. At 120 GeV, a 40 mb octet cross section is assumed (dotted).



Final-State Energy Loss (Arleo and Peigne)
Arleo and Peigne (arXiv:1204.4609) fits an energy loss parameter that also depends
on LA to E866 data and uses the same parameter for other energies
They find a somewhat better fit assuming gluon saturation, with a modified energy
loss parameter and see a strong

√
s dependence

1
A

d� pA(xF )
dxF

=
∫ Ep−E

0 d�P (� )
d� pp(xF + �x F (� ))

dxF

Backward xF effect is large for this scenario
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Intrinsic Charm



Intrinsic Charm
Proton wavefunction can be expanded as sum over complete basis of quark and
gluon states: |Ψp〉 = ∑

m |m〉  m=p(x i ; kT;i; � i )
|m〉 are color singlet state fluctuations into Fock components |uud〉, |uudg〉 · · · |uudcc〉
Boost invariant wavefunctions  m=p(x i ; kT;i; � i) depend on x i = k+

i =P+ and kT;i the
momentum fraction and transverse momentum for each parton. Momentum con-
servation demands ∑n

i=1 x i = 1 and ∑n
i=1

~kT;i = 0, where n is the number of partons in
Fock state |m〉
The intrinsic charm fluctuations can be freed by a soft interaction if the system is
probed during the time ∆t = 2plab=M 2

cc that the fluctuations exist
Dominant Fock state configurations have minimal invariant mass, M 2 = ∑

i m2
T;i=xi ,

where m2
T;i = k2

T;i + m2
i is the squared transverse mass of parton i in the state;

corresponds to configurations with equal rapidity constituents
Since intrinsic charm quarks have the same rapidity as other partons in the state,
their larger mass gives them a higher momentum fraction than the comoving light
partons



Light Cone Intrinsic Charm Quark Distribution
Frame-independent Fock state wavefunction

Ψ(~k⊥i; xi) =
Γ(~k⊥i; xi)
m2
h − M 2

Vertex function Γ assumed to be slowly varying so the denominator controls the
particle distributions; mean k2

T used to calculate the x distributions
Probability distribution for n-particle Fock state as a function of x

dPic

dxi · · · dxn
= Nn[� 2

s(M cc)]2
� (1 − ∑n

i=1 xi)
(m2

h − ∑n
i=1(m̂2

i=xi))2

N n is a normalization to total probability for each state; heavy quark limit, m̂c,
m̂c ≫ mh, m̂q

dPic

dxi · · · dxn
= Nn[� 2

s(M cc)]2
xcxc

(xc + xc)2 � (1 −
n∑

i=1
xi)

Finally, in a |uudcc〉 state, n = 5 and integration over light quarks and c gives

c(x) ∝
dPic(x)

dx
=

1
2

N5x2[
1
3

(1 − x)(1 + 10x + x2) + 2x(1 + x) ln x]

If the intrinsic charm probability is 1%, N5 = 36



Intrinsic Charm Structure Functions
Simplest LO F c

2 , no mass effects F (0)
2 (x) = 8

9xc(x)
Hoffmann and Moore incorporated mass effects: scaling variable, � = 2ax[1 + (1 +
4�x 2)1=2]−1 where � = m2

p=Q2, a = [(1 + 4� )1=2 + 1]=2 and � = m2
c=Q2, cc mass constraint,

� ≤  < 1,  = 2ax̂[1 + (1 + 4� x̂2)1=2]−1 [c(z;  ) = c(z) − zc( )= for z ≤  ; 0 otherwise]

F (0)
2 (x; Q2; m2

c) =
8
9

�c(�;  )

Generalized operator product expansion to include mc; mp for final LO result

F (0)
2 (x; Q2; m2

c) =
8x2

9(1 + 4�x 2)3/2




(1 + 4� )

�
c(�;  ) + 3ĝ(�;  )





ĝ(�;  ) =
2�x

(1 + 4�x 2)

∫ γ

ξ
dt

c(t;  )
t

(

1 −
�

�t 2

) [

1 + 2�xt +
2�x

t

]

The NLO component of intrinsic F c
2 is

F (1)
2 (x; Q2; m2

c) =
8
9

�
∫ 1

ξ/γ

dz
z

c(�=z;  )� (1)
2 (z; � )

� (1)
2 (z; � ) =

2� s

3�
� (1 − z)

{
4 ln � − 2 +

√
1 + 4�L +

(1 + 2� )√
1 + 4�

[3L 2 + 4L + 4Li2(−d=a) + 2L ln � − 4L ln(1 + 4� ) + 2Li2(d2=a2)]
}

+
� s

3�
1

(1 + 4�z 2)2

×
{ 1

[1 − (1 − � )z]2
[(1 − z)(1 − 2z − 6z2 + 8z4) + 6�z (1 − z)(3 − 15z − 2z2 + 8z3) + 4� 2z2(8 − 77z + 65z2 − 2z3) + 16� 3z3(1 − 21z + 12z2)

−128� 4z5] −
2L̂√

1 + 4�z 2
[(1 + z)(1 + 2z2) − 2�z (2 − 11z − 11z2) − 8� 2z2(1 − 9z)] −

8z4(1 + 4� )2

(1 − z)+
−

4z4(1 + 2� )(1 + 4� )2L̂√
1 + 4�z 2(1 − z)+

}

L̂ = ln
[

4�z [1 − (1 − � )z]
(1 + 2�z +

√
1 + 4�z 2)2

]



Intrinsic F c
2 for EMC Analysis

IC contribution at higher Q2 and x than EC, NLO range is not as broad as LO

Figure 17: (Left) The IC contributions to the structure function F2(x,Q2,m2
c). At LO we show the massless result (upper dotted), the ξ-scaling result (dot-

dashed) and the full kinematically corrected formula (upper solid). The full NLO correction (lower dotted) and the leading-log approximation (dashed) are also
shown, along with the sum of the LO and NLO full results (lower solid). The results are given for Q2 = 7 (a) and 70 (b) GeV2. From Harris, Smith and RV.
(Right) The intrinsic charm structure function used in the EMC analysis as a function of Q2 (left-hand side) and x (right-hand side). From top to bottom the
average energy transfer ν is 53, 95 and 168 GeV respectively. The full LO (dashed) and NLO (solid) results are shown.



Extrinsic Charm ( ∗(q) + a1(k1) → c(p1) + c(p2) + a2(k2))
Structure function

F 2(x; Q2; m2
c) =

Q2� s(� 2)
4� 2m2

c

∫ 1

ξmin

d�
�

[
e2
cf g/p(�; � 2)c(0)

2,g

] Q2� 2
s(� 2)

�m 2
c

∫ 1

ξmin

d�
�




 e2
c f g/p(�; � 2

c)
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2,g + c(1)

2,g ln
� 2

m2
c





+
∑

i=q,q
f i/p(�; � 2)



e2
c



c(1)
2,i + c(1)

2,i ln
� 2

m2
c



 e2
i d(1)

2,i + ec ei o
(1)
2,i










� min = x(4m2
c + Q2)=Q2; ci , di and oi are scale-independent coefficient functions: ci is

for  ∗ c coupling, di for  ∗ q coupling, o is interference term

Figure 18: The extrinsic charm structure function used in the EMC analysis as a function of Q2 (left-hand side) and x (right-hand side) calculated with mc = 1.5
GeV, µ2 = Q2 + 20 GeV2 and CTEQ3 in the MS scheme. From top to bottom the average energy transfer ν is 53, 95 and 168 GeV respectively.



Comparison to EMC Data
Normalization of EC and IC components free parameters in fit to EMC charm data
(Harris, Smith and RV) – note old PDFs used in analysis

F c
2 (x; Q2; m2

c) = � F c,EC
2 (x; Q2; m2

c) + � F c,IC
2 (x; Q2; m2

c)

� gives measure of NNLO correction, � is based on a 1% IC normalization
Uncertainties are for 95% confidence level; most significant result is at highest �

ν̄ = 53 GeV ν̄ = 95 GeV ν̄ = 168 GeV
PDF α β α β α β

CTEQ3 0.95 ± 0.64 0.36 ± 0.58 1.20 ± 0.13 0.39 ± 0.31 1.27 ± 0.06 0.92 ± 0.53
MRS G 1.02 ± 0.69 0.34 ± 0.58 1.38 ± 0.15 0.32 ± 0.32 1.47 ± 0.07 0.79 ± 0.53
GRV94 1.15 ± 0.77 0.33 ± 0.58 1.45 ± 0.16 0.34 ± 0.31 1.48 ± 0.08 0.88 ± 0.53

Figure 19: The sum of the EC and IC structure functions, weighted by the parameters α and β, are compared to the EMC F c2 for ν = 53 (a), 95 (b) and 168
(c) GeV. The results are shown for CTEQ3 (solid), MRS G (dotted) and GRV98 (dashed) as a function of x. (From Harris, Smith and R.V..)



Light Cone IC Leads to Interesting Observable
Consequences

IC states can either fragment, like normal leading-twist factorization of charm
production or coalesce into charm mesons and baryons
Charm hadrons formed by IC coalescence are produced with much higher xF than
at leading twist, these are leading charm hadrons

Figure 20: Charm hadron production in the intrinsic charm model with a π− (left) and proton (right) projectile. The probability distributions, (1/Pnic)(dPnic/dxH),
for uncorrelated fragmentation and coalescence with a π− projectile (left) are given for the minimal 4-particle Fock state (a) and for the 6-particle Fock states
with light quarks q = u, d (b) and with strange quarks (c). The probability distributions, (1/Pnic)(dPnic/dxH), for uncorrelated fragmentation and coalescence
with a proton projectile (right) are given for the minimal 5-particle Fock state (a) and for the 7-particle Fock states with light quarks q = u, d (b) and with
strange quarks (c). The solid curve in each case is the charm quark distribution which also serves as the hadron distribution for independent fragmentation.
The other curves are the probability distributions for hadron production by coalescence, including: D− (dashed), Λ+

c (dot-dashed), Ξ0
c (dot-dash-dashed) and

D−
s (dotted). If the shape of the probability distribution is the same for any two hadrons (such as the Σ0

c and the Λ+
c in (b)) in a configuration, it is indicated.

[From Gutierrez and RV.]



Asymmetries Observed Between Leading and
Nonleading Charm

Asymmetries mostly observed in fixed target � −A interactions
Should be observable with protons too, fewer measurements with poorer statistics

Figure 21: (Left) results for (a) nonleading charm and (b) leading charm distributions in π−p interactions at 340 GeV and (c) the asymmetry are compared
with the WA82 (circles) and E769 (stars) data. The combined asymmetry from both experiments is also shown (squares). The calculations are with GRV LO
distributions using delta-function (solid) and Peterson function (dashed) fragmentation with the intrinsic charm contributions to nonleading and leading charm
production. The dotted curve in (b) shows the leading D distribution with ξ = 0.9 (weight factor of coalescence relative to fragmentation). The dot-dashed
curve is shows the prediction of fusion with final-state coalescence. In (c), the dashed curve is calculated with the Peterson function and the solid curve with
delta-function fragmentation. Both are averaged over nuclear target. The dot-dashed curve uses delta-function fragmentation and a proton target. The dotted
curve shows the leading contribution calculated with ξ = 0.9 for a proton target. [From Brodsky and RV.] (Right) Predictions of the energy dependence of
charm hadron production by a proton beam on lead targets. The curves in (a) and (b) illustrate the dependence of leading charm on the projectile energy. The
fusion curve (solid) includes no IC while the other curves assume Pic = 0.31%. They are D− (dashed), D+ (dot-dashed) and Λc (dotted). The D−/D+ (solid)
and Λc/D− (dashed) asymmetries are shown at 200 GeV (c) and 450 GeV (d).



A Dependence of Intrinsic Charm
EMC analyses of EMC charm structure function data find Pic ∼ 0:3 − 1 %

Intrinsic charm is stronger at lower energies because � lt is smaller but because � ic

does not change much with energy, effect decreases as energy increases
Intrinsic charm dominates the A dependence at high xF , note difference between
projectile and target regions

Figure 22: The A dependence of intrinsic charm at 800 GeV (solid) and 120 GeV (dashed). In (a) and (c) an effective production probability of 1% is assumed
in the CEM and in NRQCD respectively while in (c) and (d) P eff

ic = 0.31% is assumed in the CEM and in NRQCD. At xF > 0 the projectile proton strikes a
nuclear target, at negative xF , the nuclear ‘projectile’ strikes a proton target, making the A dependence different in the two regions.

.



Nuclear Absorption



A Dependence of J= and  ′ Not Identical
Extensive fixed-target data sets (NA50 at SPS, E866 at FNAL) show clear differ-
ence at midrapidity [NA50 �L fit gives ∆� = �  ′

abs − � J= 
abs = 4:2 ± 1:0 mb at 400 GeV,

2:8 ± 0:5 mb at 450 GeV for absolute cross sections]

Figure 23: The J/ψ A dependence (left) as a function of xF at FNAL (
√
SNN = 38.8 GeV) and (right) and a function of A at the SPS (NA50 at plab = 400 and

450 GeV) for J/ψ and ψ′ production.



PHENIX Has Measured RdAu for  ′ and � c

First results shown at Quark Matter ’12 for  ′ and � c

RdAu ∼ 0:75 ± 0:20; 0:75 ± 0:25; 0:30 ± 0:15 for J= , � c and  ′ respectively

Figure 24: The J/ψ and ψ′ Ncoll dependence as reported by PHENIX at QM’12 by D. McGlinchey.



A Dependence of Charmonium States May Differ
NRQCD approach predicts different cross sections for J= ,  ′ and � c

d� ψ, tot
pA

dxF
=




d� ψ, dir, oct

pp

dxF
+

2∑

J=0
B (� cJ →  X )

d� χcJ , oct
pp

dxF
+ B ( ′ →  X )

d� ψ
′, oct

pp

dxF




∫

d2bTeff (oct)
A (b)

+
∫

d2b




d� ψ, dir, sing

pp

dxF
Tψ,dir,eff (sing)
A (b) +

2∑

J=0
B (� cJ →  X )

d� χcJ , sing
pp

dxF
TχcJ , eff (sing)
A (b) + B ( ′ →  X )

d� ψ
′, sing

pp

dxF
Tψ′, eff (sing)
A (b)





T eff
A (b) =

∫ ∞

−∞
dz � A(b; z) exp

{
−

∫ ∞

z
dz′� A(b; z′)� abs(z′ − z)

}

Figure 25: The A dependence of singlet and octet absorption is shown at 920 GeV. The total J/ψ dependence is given in the solid curve, the direct J/ψ in the
dashed, ψ′ in the dot-dashed, and χc in the dotted curve assuming σoctet

abs = 4 mb and σsinglet J/ψ
abs = 5 mb.



Effective Absoprtion Cross Section Energy Dependent
Once data corrected for shadowing effects, dependence of effective absorption cross
section on center of mass energy is clear
In backward region, quarkonium states should be fully formed within the target
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Figure 26: At midrapidity, the effective absorption cross section decreases as a function of energy. (Modified from Lourenco, Wohri and RV.)



That’s Not All Folks

Υ Teaser



Υ A Dependence Also of Interest in Backward Region
E772 measured possible difference between Υ(1S) and Υ(2S) + Υ(3S) A dependence
in the backward xF region

Figure 27: The E772 Υ A dependence as a function of xF , x2 and pT .



Summary .

• Lots of interesting nuclear effects on open charm and charmonium

• An experiment like AFTER could sort them out


