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Lecture 3

Scattering without emission
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Next: Scattering without emission
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Same starting point, 
Note: we are again ignoring
the fragmentation function
during the derivation

Higher order diagrams from multiple 
scattering, lets ignore emissions for the 
moment and only include scatterings

{W_0^A}^{\mu \nu} 
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The guiding principle, general comments

For every factor of g, only include that part that is really big!

The emissions gave us large logs in Q2 

That will not be the case in scattering. 
However we can get large factors of length and or density, how? 

If scatterings donÕt dramatically change virtuality then jet can sample a large L
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Kinematics

In every scattering there is an exchange of 4-momentum 

!

�ï

! �ï

T

Jet has forward light-cone momentum q- >> µ its virtuality 

q^+ = \frac{\mu^2}{2q^-} \ra 0 \,\, \mbox{assume} \,\, q_\perp = 0

q+ =
µ2

2q−
! 0 assume q⊥ = 0

(q+ k)2 − µ2 → 0
⇒ 2k+k− − k2

⊥ + 2k+q− + 2k−q+ = 0

⇒ k+ � k2
⊥

2(q− − k−)

To maintain the jet virtuality 
for subsequent scattering
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More kinematics

Jet is a time-like current with

Say in the amplitude, the jet scatters at x and in the c.c. it scatters at x+!x

q^- \sim Q, \,\, q^+ \sim \frac{\mu^2}{Q} = \lambda^2 Q,\,\, \lambda \ra 0

q! ! Q, q+ !
µ2

Q
= ! 2Q, ! " 0

!x + ∼ 1/Q, !x − ∼ Q/µ 2, requiring causality !x 2 > 0

⇒ !x 2
⊥ < 2!x + !x − ∼ 1

µ2 ⇒ k⊥ ∼ µ ≡ "Q

" is a small dimensionless quantity: ratio of jetÕs virtuality to its energy

thus

if k+ is much larger than this then the jet will go time like off-shell and radiate

We are just ignoring this possibility for the moment

if k+ is smaller, then the jet will go space-like and will have to scatter 

if k- is much larger, this will become a radiated gluon which will have to scatter 

k⊥ ! λQ, k+ ! λ2Q, 0 < k− " λQ, thus k2 # $ k2
⊥ < 0
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q q

APAP y

Further considerations

If we require a factor of length with every appearance of #S

Then we can ignore the following diagrams

>>g2

We only need to consider ladder diagrams

Since k2 ~ - ("Q)2 >> ! QCD2 
we really mean

Even though we always draw the 
jet outside the medium
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1 = \int d^4 p_n  \kd^4 \left( l - \sum_{k=0}^{n} p_k - q \right)
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p
0

1q2q3q1qÕ 2qÕ 3qÕ
q q

APAP y

LetÕs start calculating (again!)
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! e−i
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j −y!
j " 1 )e−il·(yn −y!

n ! )

qi = q +
i ! 1!

m =0

pm and q"
j = q +

j ! 1!

k=0

p"
jshifting

1 =
�

d4pn δ4

�
l !

n�
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�

and an nth momemtum
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! = exp
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ipi áyi +
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&

'

(

) .

Simplifications simplifications simplifications!

overall phase factor:

the pÕs  are the momenta exchanges at each of the quark scattering vertices.

We can use " to identify the leading terms in the calculation.
We donÕt make any assumptions about the structure of the medium
Thus will leave the vector potentials (A) as is, but will use its " scaling

We are in the Breit frame: quarks and gluons in the nucleons with large (+) 
component of the momenta, solve MaxwellÕs equation with these sources

p⊥ ! λQ, p+ ! λ2Q, p− ! λQ

Aµ (x1) =
�

d4y1Dµ! (x1 ! y1)J! (y1)
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Simplifying 

A^+ \sim \lambda^6 Q^6 ( \lambda^2 Q^3)^{-1} Q / ( Q \lambda^2 Q^2) 

ignoring factors of 2 and "

note: k and kÕ scale as Q(1,#2,#) {ap, a
 
p�} � δ3(�p− �p! ) ∼ (λ2Q3)" 1

(k − k! )2 = p2 ∼ λ2Q2

d3k ! λ2Q3, d3k! = d3p ! λ4Q2

ūγ+ u ! Q

A+ !
�

d3kd3k!
"

k+ k!+

# g+ " + n+ (k! " k"! )
k! " k"! e" i(k" k" )áy0

(k # k!)2 a 
k" akūk" ! + u(k)

J µ = !̄" µ ! and

! (y0) =
�

dk+ d2k⊥
(2#)32k+ u(k)ak e−iky 0 + . . .

A+ ∼ ! 6Q6(! 2Q3)−1Q/ (Q! 2Q2) ∼ ! 2Q

A⊥ ∼ λ3Q Thus we only need to include A+ 

to get the leading power
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Further simplifying 

Thus the numerator looks like

. . . γ+ q−γ−A+ γ+ q−γ−A+ . . . ! (q−)n + n �
A+ n + n �

�
dp+
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simplify denominators with # power counting  and contour integration 

This gives,
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Imposing color constraints

Note: because of the $ functions, the scatterings on the amplitude and 
complex conjugate are completely ordered.

In order to get the maximum length enhancement, we need each 
gluon to come from a different nucleon

Each nucleons final color (after losing a gluon) in the amplitude has 
to match that in the complex conjugate. 

Assuming translational 
invariance in each nucleon

!
dy−i dy�−i d2yi

⊥d2y� i⊥!p|A+ (!y i
⊥)A+ (!y�

i
⊥)|p"

# e−ix i
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⊥·y i
⊥eix �iDp+ y �−i e−ip �i⊥·y �j⊥

= (2" )2#2(!p i
⊥ $ !p�

i
⊥)

!
d2y⊥e−ix i

Dp+ (y−i −y �−i )

# eip⊥·y⊥ !p|A+ (!y ⊥/ 2)A+ ($ !y ⊥/ 2)|p"
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Expanding out the %-function

! 2("lq⊥ !
!

i

"pi
⊥) "

n"

i =1

#
pi
⊥ á #l q !

$2

2
! 2("lq⊥)

Note: while we keep saying %-function, in reality this is a narrow Gaussian
Putting all of this together we get the case for n-scattering as 
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to get the full Wµ& we need to sum over  n going from 0 to infinity

dWµ!

d2l⊥
=
∞!

i =0

dWµ!
n

d2l⊥

call the [...] as L- D

\frac{dW^{\mu \nu}}{d^2l_\perp} = \sum_{i=0}^{\infty} \frac{dW_n^{\mu \nu}}{d^2l_\perp} 13



Use a differential technique

φn ≡
d2W µ!

n

d2l⊥
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0
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This is a diffusion equation (taking a normalized solution) 
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Why the normalized solution

what about diagrams like these

xp xp

q q

These have lower transverse momentum for the cut quark but same L-factor

And they are negative. 

Integrating out the transverse momentum, completely removes the L enhancement

∂
!

d2l⊥φ(L−,�l⊥)
∂L−

= 0

\frac{\prt \int d^2 l_\perp \phi(L^-,\vl_\perp)  } {\prt L^-} = 0 15


